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Introduction

I shall present some results obtained these last three years in collaboration
with Horia Cornean and Pierre Duclos ,
results that allowed us to construct a Non-Equilibrium Steady State
associated to an adiabatic modification of some thermodynamical
parameter.

Reference

H. D. Cornean, P. Duclos, R. Purice:
Adiabatic non-equilibrium steady states in the partition free approach,
preprint arXiv:1006.4272
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The System

The System

We consider a sample connected to two semi-infinite cylindrical
conductors, in which a gas of non-interacting electrons is moving.

The configuration space:

A closed subset L ⊂ Rd+1 with d ≥ 0 of the form

L :=
[
(−∞,−a0)×D

]
∪ C0 ∪

[
(a0,∞)×D

]
, for some a0 > 0.

where:

1 D ⊂ Rd is a bounded simply connected open set awith regular
boundary ∂D,

2 C0 ⊂ Rd+1 is bounded and satisfies:
(

[−a0, a0]× Rd
)
∩L = C0,

3 Σ := ∂L is a regular surface in Rd+1.
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The System

The System

We will consider some electric potentials applied on each of the two leads
and we will allow for some distance between the ’real sample’ and the
electric potentials. More precisely we shall consider the following
decomposition of the configuration space:

Choose a > a0 > 0 and define

L− := (−∞,−a)×D, L+ := (a,∞)×D, C := L ∩
(

(−a, a)× Rd
)
.

so that
L = L− ∪ C ∪ L+;

C0 ⊂ C.

We shall use the notations: I− := (−∞,−a) and I+ := (a,∞).
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The System

The One-body Dynamics

Each electron moves free in each conductor L± := I± ×D.

To the sample C we associate a potential function w ∈ C∞c (C0),
smooth and with compact support.

We shall suppose that w ≥ 0 (by just adding a constant term).

The Hilbert Space

H := L2(L).

We use the orthogonal decomposition:

Π− : H → H− := L2(I− ×D),

Π+ : H → H+ := L2(I+ ×D),

Π0 : H → H0 := L2(C),
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The System

The One-body Dynamics

Let H1
0 (L) and H2(L) be the usual Sobolev spaces on the open

domain L ⊂ Rd+1.

Let −∆D be the Laplace operator on L
with Dirichlet boundary conditions on Σ

it has the domain HD(L) := H1
0 (L) ∩ H2(L)

Due to our assumption the perturbation, w = Π0wΠ0 is relatively
bounded with bound 0 with respect to ∆D .

The one-particle Hamiltonian is of the form:

H := −∆D + Π0wΠ0

acting on H := L2(L), with domain

HD(L) := H1
0 (L) ∩ H2(L).

We denote by R(z) the rezolvent of H.
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The System

The One-body Dynamics

Remark

Due to our hypothesis on w all the iterated commutators[
Q1,

[
Q1, . . .

[
Q1,Π0wΠ0

]
. . .
]]

= 0 and
[
P1,
[
P1, . . .

[
P1,Π0wΠ0

]
. . .
]]

are bounded operators in H.

We denoted by Q1 the operator of multiplication with the variable x ∈ R
on H and by P1 := −i∂x ; we consider the factorization Rd+1 ∼= R× Rd .

Proposition 0 (case κ = 0)

σsc(H) = ∅.

Hypothesis 1

We shall suppose that

σpp(H) = σdisc(H), #σpp(H) <∞.
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The System

The Electric Bias

We consider that an electric voltage is aplied adiabatically on the two
conductors starting at time s = −∞.

V := v−Π− + v+Π+ with v± ∈ R.

χ a strictly increasing function in C∞(R−) such that 0 < χ(t) ≤ 1;

for any η > 0 let χη(t) := χ(ηt) and Vη(t) := χη(t)V .

The time-dependent Hamiltonian

Kη(t) := H + Vη(t)

with domain
HD(L) := H1

0 (L) ∩ H2(L)

.
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The System

The Electric Bias

The non-homogenous evolution

For −∞ < s ≤ t ≤ 0, the unitary propagator Wη(t, s)
is the solution of the Cauchy problem:

i∂tWη(t, s) = Kη(t)Wη(t, s)

Wη(s, s) = 1.

For any η > 0 the family {Kη(t)}t∈R are self-adjoint operators in H,
having a common domain equal to HD(L) and depending differentiable on
t ∈ R with a bounded self-adjoint norm derivative

∂tKη(t) = η χ(ηt)V .
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The System

The State

We consider that in the remote past, t → −∞,
the electron gas has no self-interactions and is in equilibrium
at temperature T and chemical potential µ, moving in all the volume L

Thus it is described by a quasi-free state having as two-point function the
usual Fermi-Dirac density at temperature T and chemical potential µ:

ρe(E ) :=
1

1 + e(E−µ)/kT

applied to the total Hamiltonian H =
(
−∆D

)
⊗ 1 + Π0wΠ0.

Initial state at t = −∞: ρe(H).
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The System

The State

The state at time t ∈ R−
ρη(t) := s − lim

s↘−∞
Wη(t, s)ρe(H)Wη(t, s)∗.

Remarks:

ρe(H) = e i(t−s)Hρe(H)e−i(t−s)H

Let us define Ωη(t, s) := Wη(t, s)e i(t−s)H

so that: ρη(t) := s − lim
s↘−∞

Ωη(t, s)ρe(H)Ωη(t, s)∗.

Proposition

The following limit exists

Ωη(t) := n − lim
s↘−∞

Ωη(t, s).

but not uniformly with respect to η.
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The System

Proof of the Proposition:

Let us write the equation in integral form:

Ωη(t, s) = 1 + i

∫ t

s
χ(ηr)Ωη(t, r)e i(r−t)HV (Q)e−i(r−t)H dr

so that

‖Ωη(t, s1) − Ωη(t, s2)‖ ≤
∫ s1

s2

χ(ηr)‖V (Q)‖ dr

verifying thus the Cauchy criterion for convergence with respect to the
uniform topology on B[H] due to the integrability of χ.
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The System

The State (useful formula)

Using the previous Proposition let us denote by:

Ωη := s − lim
s↘−∞

Ωη(0, s).

so that it is easy to verify that

ρη(t) = Wη(t, 0)Ωηρe(H)Ω∗ηWη(t, 0)∗.
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The Main Result

The Adiabatic Limit

In oredr to study the limit for η ↘ 0
we shall introduce some new wave operators associated to other pairs of
Hamiltonians defined by
decoupling the system at x = ±a by imposing Dirichelt conditions on D±.

This trick will allow us to compare in a more precise way
the asymptotic evolution Wη(t, s)
with the one associated to the Hamiltonian H.
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The Main Result

The Decoupled System

We shall denote by:

◦
HD(L) := HD(L−)⊕HD(C)⊕HD(L+); where

HD(L±) := H1
0 (L±) ∩ H2(L±); HD(C) := H1

0 (C) ∩ H2(C)

◦
∆D :

◦
HD(L)→ L2(L) the self-adjoint Laplace operator with Dirichlet

conditions on ∂L ∪D− ∪D+;

we have
◦
∆D =

◦
∆D,− ⊕

◦
∆D,0 ⊕

◦
∆D,+.

We can write
◦
∆D,± = l± ⊗ 1 + 1⊗ LD with:

LD the Laplacean on the bounded domain D ⊂ Rd with Dirichlet
conditions on the boundary ∂D
l± is (−1) times the operator of second derivative on I± with
Dirichlet condition at ±a resp.

Radu Purice (IMAR) NESS as adiabatic limit Poitiers, August 26, 2010 18 / 55



The Main Result

The Decoupled System

We shall denote by:

◦
HD(L) := HD(L−)⊕HD(C)⊕HD(L+); where

HD(L±) := H1
0 (L±) ∩ H2(L±); HD(C) := H1

0 (C) ∩ H2(C)

◦
∆D :

◦
HD(L)→ L2(L) the self-adjoint Laplace operator with Dirichlet

conditions on ∂L ∪D− ∪D+;

we have
◦
∆D =

◦
∆D,− ⊕

◦
∆D,0 ⊕

◦
∆D,+.

We can write
◦
∆D,± = l± ⊗ 1 + 1⊗ LD with:

LD the Laplacean on the bounded domain D ⊂ Rd with Dirichlet
conditions on the boundary ∂D
l± is (−1) times the operator of second derivative on I± with
Dirichlet condition at ±a resp.

Radu Purice (IMAR) NESS as adiabatic limit Poitiers, August 26, 2010 18 / 55



The Main Result

The Decoupled System

We shall denote by:
◦
HD(L) := HD(L−)⊕HD(C)⊕HD(L+); where

HD(L±) := H1
0 (L±) ∩ H2(L±); HD(C) := H1

0 (C) ∩ H2(C)

◦
∆D :

◦
HD(L)→ L2(L) the self-adjoint Laplace operator with Dirichlet

conditions on ∂L ∪D− ∪D+;

we have
◦
∆D =

◦
∆D,− ⊕

◦
∆D,0 ⊕

◦
∆D,+.

We can write
◦
∆D,± = l± ⊗ 1 + 1⊗ LD with:

LD the Laplacean on the bounded domain D ⊂ Rd with Dirichlet
conditions on the boundary ∂D
l± is (−1) times the operator of second derivative on I± with
Dirichlet condition at ±a resp.

Radu Purice (IMAR) NESS as adiabatic limit Poitiers, August 26, 2010 18 / 55



The Main Result

The Decoupled System

We shall denote by:
◦
HD(L) := HD(L−)⊕HD(C)⊕HD(L+); where

HD(L±) := H1
0 (L±) ∩ H2(L±); HD(C) := H1

0 (C) ∩ H2(C)

◦
∆D :

◦
HD(L)→ L2(L) the self-adjoint Laplace operator with Dirichlet

conditions on ∂L ∪D− ∪D+;

we have
◦
∆D =

◦
∆D,− ⊕

◦
∆D,0 ⊕

◦
∆D,+.

We can write
◦
∆D,± = l± ⊗ 1 + 1⊗ LD with:

LD the Laplacean on the bounded domain D ⊂ Rd with Dirichlet
conditions on the boundary ∂D
l± is (−1) times the operator of second derivative on I± with
Dirichlet condition at ±a resp.

Radu Purice (IMAR) NESS as adiabatic limit Poitiers, August 26, 2010 18 / 55



The Main Result

The Decoupled System

We shall denote by:
◦
HD(L) := HD(L−)⊕HD(C)⊕HD(L+); where

HD(L±) := H1
0 (L±) ∩ H2(L±); HD(C) := H1

0 (C) ∩ H2(C)

◦
∆D :

◦
HD(L)→ L2(L) the self-adjoint Laplace operator with Dirichlet

conditions on ∂L ∪D− ∪D+;

we have
◦
∆D =

◦
∆D,− ⊕

◦
∆D,0 ⊕

◦
∆D,+.

We can write
◦
∆D,± = l± ⊗ 1 + 1⊗ LD with:

LD the Laplacean on the bounded domain D ⊂ Rd with Dirichlet
conditions on the boundary ∂D
l± is (−1) times the operator of second derivative on I± with
Dirichlet condition at ±a resp.
Radu Purice (IMAR) NESS as adiabatic limit Poitiers, August 26, 2010 18 / 55



The Main Result

The Decoupled System

The decoupled Hamiltonian

◦
H := −

◦
∆D + Π0wΠ0 :

◦
HD(L) −→ H.

(having Dirichlet conditions on ∂L ∪D− ∪D+).

The decoupled Hamiltonian with bias

◦
K η(t) :=

◦
H + Vη(t) =

◦
H + χη(t)V :

◦
HD(L) −→ H.

The decoupled non-homogeneous evolution
◦

W η(t, s) defined as the solution of the following Cauchy problem: −i∂t

◦
W η(t, s) = −

◦
K η(t)

◦
W η(t, s)

◦
W η(s, s) = 1

.
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The Main Result

The Decoupled System

The existence of the solution
◦

W η(t, s) results by arguments similar to
those concerning the existence of Wη(t, s).

All the above operators commute with Π± and thus with V .

We have the formula
◦

W η(t, s) =

= e−i(t−s)
◦
H
[
1 + Π−

(
e iv−

R t
s χ(ηu)du

)
+ Π+

(
e iv+

R t
s χ(ηu)du

)]
with the last two exponentials being just complex numbers.

We shall denote by
◦
R(z) the rezolvent of

◦
H.
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The Main Result

We shall also need to consider
the ’bias’ with a fixed coupling constant κ ∈ [0, 1] and define:

Kκ := H + κV ,
◦
Kκ :=

◦
H + κV ,

and their rezolvents Rκ(z) and
◦
Rκ(z).

Proposition o (case κ = 1)

σsc(Kκ) = ∅.

Hypothesis 2

a) σpp(Kκ) ∩ σc(Kκ) = ∅,
b) #σpp(Kκ) = N <∞ ∀κ ∈ [0, 1], σpp(Kκ) = {εj(κ)}Nj=1.

c) min
κ∈[0,1]

{dist (σpp(K (κ)), σac(K (κ)))} ≥ d > 0.
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The Main Result

The Main Result

Theorem

1 The limit ρη(t) := s − lim
s↘−∞

ρη(t, s) exists for any t ≤ 0,

uniformly with respect to η > 0.

2 The wave operator Ξ0 for {
◦
K 1,K1} exists and is complete.

3 The following limit exists, is independent of t and is given by

ρne :=s − lim
η↘0

ρη(t) = Ξ0ρ(
◦
H)Ξ∗0 +

N∑
j=1

ρ(εj(0))Ej(K1),

where {εj(0)}Nj=1 are the eigenvalues of H = K0 in ascending order
and {Ej(K1)} the eigenprojections for the Hamiltonian K1 obtained
by analytically continuing {Ej(Kκ)}Nj=1 from κ = 0 to κ = 1.
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Proof of the main result

Proof of the main result
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Proof of the main result

Reduction to t = 0.

It is enough to prove our main formula giving the non-equilibrium state
ρne for t = 0.

We use the formula:

ρη(t) = Wη(t, 0)Ωηρe(H)Ω∗ηWη(t, 0)∗ = Wη(t, 0)ρη(0)Wη(t, 0)∗.

Indeed, once this formula is proved for t = 0 it shows that the strong
limit of ρη(0) when η ↘ 0 is commuting with K1 = H + V .

It is elementary to check that Wη(t, 0) and Wη(t, 0)∗ converge in
norm to e−itK1 and respectively e itK1 when η ↘ 0 (with t fixed).

Since e±itK1 commute with s − lim
η↘0

ρη(0) it follows that the adiabatic

strong limit of ρη(t) must also exist satisfy the equation in our main
Theorem.
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Proof of the main result

Preliminary result

Proposition 0

Let κ ∈ [0, 1]. There exists a discrete set N ⊂ R such that for any closed
interval I ⊂ R+ \N we have the estimate (here 〈x〉 :=

√
x2 + 1):

sup
z∈{x+iy |x∈I ,0<y<δ}

∥∥∥e−〈Q1〉Rκ(z)e−〈Q1〉
∥∥∥ ≤ C (I , δ, κ) <∞.

In particular, Kκ has no singular continuous spectrum.
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Proof of the main result

Road Map of the Proof

We have to study the existence of the following double limit:

ρne = s − lim
η↘0

{
s − lim
s→−∞

Wη(0, s)ρe(H)Wη(0, s)∗
}
.

Proposition 0 implies σsc(Kκ) = ∅ so that

H = E∞(κ)H⊕
{
⊕

1≤j≤N
Ej(κ)H

}
,

where E∞(κ) := Eac(Kκ) and Ej(κ) := Ej(Kκ).

Then we can write

ρη(t, s) = Wη(t, s)ρ(H)E∞(0)Wη(t, s)∗+

+

 ∑
1≤j≤N

ρ(εj)Wη(t, s)Ej(0)Wη(t, s)∗

.
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Proof of the main result

Road Map of the Proof. The discrete spectrum

Let us compute (for some j ∈ {1, . . . ,N})

s − lim
η↘0

[
s − lim
s↘−∞

Wη(s)∗Ej(0)Wη(s)

]
.

As V is a bounded analytic perturbation of H,
the map [0, 1] 3 κ 7→ Ej(κ) ∈ B(H) is Lipschitz continuous in norm.

Thus there exists a constant C > 0 such that:∥∥W ∗
η (s)Ej(0)Wη(s)−W ∗

η (s)Ej(χ(ηs))Wη(s)
∥∥ ≤ Cχ(ηs), s ≤ 0.

Thus we can replace Ej(0) with Ej(χ(ηs)) and the limit does not
change.
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Proof of the main result

Road Map of the Proof. The discrete spectrum

Proposition D-1 (a weak version of the gap-less adiabatic theorem)

The following limit exists in the norm topology and we have the equality:

n − lim
η↘0

[
n − lim
s↘−∞

W ∗
η (s)Ej(χ(ηs))Wη(s)

]
= Ej(1).

Corollary

n − lim
η↘0

[
n − lim
s↘−∞

W ∗
η (s)Ej(0)Wη(s)

]
= Ej(1)′

n − lim
η↘0

[
n − lim
s↘−∞

e isHEac(H)Wη(s)Epp(K (1))

]
= 0.

The first equality concludes the proof of the adiabatic limit for the discrete
part of the spectrum (in the norm topology !).
The second one will play a role further.
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Proof of the main result

Road Map of the Proof. The continuous spectrum

We consider the term coming from the absolutely continuous spectrum:

s − lim
η↘0

[
s − lim
s↘−∞

W ∗
η (s)ρeq(H)Eac(H)Wη(s)

]
.

The second equality in the previous Corollary implies:

s − lim
η↘0

[
s − lim
s↘−∞

W ∗
η (s)ρeq(H)Eac(H)Wη(s)

]
= s − lim

η↘0

[
s − lim
s↘−∞

W ∗
η (s)Eac(H)e−isHρeq(H)e isHEac(H)Wη(s)

]
= s − lim

η↘0

[
s − lim
s↘−∞

Eac(K (1))W ∗
η (s)ρeq(H)Eac(H)Wη(s)Eac(K (1))

]
,

provided that the last double strong limit exists.
Note that all errors go to zero in norm.

Radu Purice (IMAR) NESS as adiabatic limit Poitiers, August 26, 2010 29 / 55



Proof of the main result

Road Map of the Proof. The continuous spectrum

We consider the term coming from the absolutely continuous spectrum:

s − lim
η↘0

[
s − lim
s↘−∞

W ∗
η (s)ρeq(H)Eac(H)Wη(s)

]
.

The second equality in the previous Corollary implies:

s − lim
η↘0

[
s − lim
s↘−∞

W ∗
η (s)ρeq(H)Eac(H)Wη(s)

]
= s − lim

η↘0

[
s − lim
s↘−∞

W ∗
η (s)Eac(H)e−isHρeq(H)e isHEac(H)Wη(s)

]
= s − lim

η↘0

[
s − lim
s↘−∞

Eac(K (1))W ∗
η (s)ρeq(H)Eac(H)Wη(s)Eac(K (1))

]
,

provided that the last double strong limit exists.
Note that all errors go to zero in norm.

Radu Purice (IMAR) NESS as adiabatic limit Poitiers, August 26, 2010 29 / 55



Proof of the main result

Road Map of the Proof. The continuous spectrum

We consider the term coming from the absolutely continuous spectrum:

s − lim
η↘0

[
s − lim
s↘−∞

W ∗
η (s)ρeq(H)Eac(H)Wη(s)

]
.

The second equality in the previous Corollary implies:

s − lim
η↘0

[
s − lim
s↘−∞

W ∗
η (s)ρeq(H)Eac(H)Wη(s)

]
= s − lim

η↘0

[
s − lim
s↘−∞

W ∗
η (s)Eac(H)e−isHρeq(H)e isHEac(H)Wη(s)

]
= s − lim

η↘0

[
s − lim
s↘−∞

Eac(K (1))W ∗
η (s)ρeq(H)Eac(H)Wη(s)Eac(K (1))

]
,

provided that the last double strong limit exists.
Note that all errors go to zero in norm.

Radu Purice (IMAR) NESS as adiabatic limit Poitiers, August 26, 2010 29 / 55



Proof of the main result

Road Map of the Proof. The continuous spectrum

Let us replace ρeq(H) with ρeq(
◦
H)Eac(

◦
H) in the previous formula.

Proposition C-1

For any Φ ∈ C0(R) we have that Φ(H)− Φ(
◦
H) is a compact operator.

We have the identity:

{ρeq(
◦
H)Eac(

◦
H)− ρeq(H)}Eac(H)Wη(s)

= −ρeq(
◦
H)Epp(

◦
H)e−isHEac(H)

{
e isHWη(s)

}
+

+{ρeq(
◦
H)− ρeq(H)}e−isHEac(H)

{
e isHWη(s)

}
.

Both terms on the right hand side are of the form Ce−isHEac(H)T
with C compact (use C-1) and T ∈ B(H).

RAGE Theorem implies the vanishing of the limit for s ↘ −∞.
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Proof of the main result

Road Map of the Proof. The continuous spectrum

Up to now we have shown that

s − lim
η↘0

»
s − lim
s↘−∞

W ∗
η (s)ρeq(H)Eac(H)Wη(s)

–
=

= s − lim
η↘0


s − lim
s↘−∞

Eac(K1)W ∗
η (s)Eac(H)ρeq(

◦
H)Eac(

◦
H)Eac(H)Wη(s)Eac(K1)

ff
.

Let us use formula:
◦

W η(t, s) =

= e−i(t−s)
◦
H
[
1 + Π−

(
e iv−

R t
s χ(ηu)du

)
+ Π+

(
e iv+

R t
s χ(ηu)du

)]
in order to obtain

s − lim
η↘0

s − lim
s↘−∞

ˆ
W ∗
η (s)ρeq(H)Eac(H)Wη(s) −

− Eac(K1)W ∗
η (s)Eac(H)

◦
W η(s)ρeq(

◦
H)Eac(

◦
H)
◦

W
∗

η(s)Eac(H)Wη(s)Eac(K1)

–
= 0.
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Proof of the main result

Road Map of the Proof. The continuous spectrum

Proposition C-2

For any η > 0 the following limits exist in the strong operator topology:

Ξη := lim
s↘−∞

Eac(K1)W ∗
η (s)Eac(H)

◦
W η(s)Eac(

◦
H).

It follows that Ξ∗η = w − lim
s↘−∞

Eac(
◦
H)
◦

W
∗

η(s)Eac(H)Wη(s)Eac(K1).

Let us notice that

Eac(
◦
H)
◦

W
∗

η(s)Eac(H)Wη(s)Eac(K1)

= Eac(
◦
H)
◦

W
∗

η(s)e−isHEac(H)
{

e isHWη(s)
}

Eac(K1)

= Eac(
◦
H)

{
◦

W
∗

η(s)e−is
◦
H

}{
e is
◦
He−isHEac(H)

}{
e isHWη(s)

}
Eac(K1).
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Proof of the main result

Road Map of the Proof. The continuous spectrum

The factor e isHWη(s) converges in norm to ω∗η when s → −∞.

The factor
◦

W
∗

η(s)e−is
◦
H converges in norm due to the explicit formula

of
◦

W η.

Proposition C-3

The limit ω− := s − lim
s↘−∞

e is
◦
He−isHEac(H) exists,

defines a unitary map Eac(H)H → Eac(
◦
H)H

and one has: s − lim
s↘−∞

e isHe−is
◦
HEac(

◦
H) = ω∗− = Eac(H)ω∗−.

Conclusion

Ξ∗η = s − lim
s↘−∞

Eac(
◦
H)
◦

W
∗

η(s)Eac(H)Wη(s)Eac(K (1)),
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Proof of the main result

Road Map of the Proof. The continuous spectrum
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W
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Proof of the main result

Road Map of the Proof. The continuous spectrum

We have thus proved that the following limit exists and is given by

s − lim
s↘−∞

W ∗
η (s)ρeq(H)Eac(H)Wη(s) = Ξηρ(

◦
H)Ξ∗η.

We have to study now the strong limits of Ξη and Ξ∗η when η ↘ 0.
In fact we shall prove that they are equal to the wave operator associated

to the pair (
◦
K 1,K1) and to its adjoint (resp.).
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Proof of the main result

Road Map of the Proof. The continuous spectrum

Proposition C-4

1 For any κ ∈ [0, 1] we have Eac(
◦
Kκ) = Eac(

◦
H).

2 The following limits exist:

Ξ0 := s − lim
s↘−∞

e isK(1)e−is
◦
K1Eac(

◦
H) = Eac(K1)Ξ0Eac(

◦
H);

Ξ∗0 = s − lim
s↘−∞

e is
◦
K1e−isK1Eac(K1) = Eac(

◦
H)Ξ∗0Eac(K1).

Thus the wave operators associated to the pair (
◦
K 1,K1) exist and are

complete.
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Proof of the main result

Road Map of the Proof. The continuous spectrum

Proposition C-5

Ξη has a strong limit when η ↘ 0 and moreover

s − lim
η↘0

Ξη = Ξ0.

The completeness of Ξ0 implies that Ξ∗0 : Eac(K (1))H → Eac(
◦
H)H is

unitary.
Thus, ∀f ∈ Eac(K (1))H,

∥∥[Ξ∗0 − Ξ∗η
]
f
∥∥2

H ≤

≤ 2‖f ‖2
H − 2<

(
〈ΞηΞ∗0f , f 〉

)
→
η↘0

2‖f ‖2
H − 2<

(
〈Ξ0Ξ∗0f , f 〉

)
= 0,

and thus for η ↘ 0, Ξ∗η converges strongly to Ξ∗0 on Eac(K1)H.
With this, the proof of the Theorem is concluded.

�
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Proof of the main result

Proof of Proposition 0

A quadratic partition of unity: χ2
− + χ2

0 + χ2
+ = 1

χ± ∈ C∞(R), χ±(x) = 1 for ± x > 2a, χ±(x) = 0 for |x | < a,

χ0 ∈ C∞(R), χ0(x) = 0 for |x | > 2a, χ0(x) = 1 for |x | < a.

A cut-off Hamiltonian: Kκ,L
For L > 2a, obtained from Kκ on the region L ∩ (−L, L) by imposing
Dirichlet boundary conditions at x = ±L.
It has compact resolvent that we denote by Rκ,L(z),
(z ∈ C \ σ(Kκ,L)).

An approximate rezolvent: R̃κ(z) :=

:= χ−(Q1)
◦
Rκ(z)χ−(Q1) + χ0(Q1)Rκ,L(z)χ0(Q1) + χ+(Q1)

◦
Rκ(z)χ+(Q1).

It is easy to verify that

(Kκ − z)R̃κ(z) = Id + X (z), with e〈Q1〉X (z) ∈ B(H).
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Proof of the main result

Proof of Proposition 0

Since for large values of =(z) the norm of e〈Q1〉X (z) tends to 0,
we can write at least for those values of z that:

e−〈Q1〉Rκ(z)e−〈Q1〉 = e−〈Q1〉R̃κ(z)e−〈Q1〉
[
1 + e〈Q1〉X (z)e−〈Q1〉

]−1
.

Now e〈Q1〉X (z)e−〈Q1〉 is compact and analytic in the upper complex plane,
and has a bounded limit from above on any interval I which avoids the
discrete set of thresholds in the leads and the discrete spectrum of Kκ,L.
Due to the exponential decaying on the right and the compactly supported
cut-offs on the left, e〈Q1〉X (z)e−〈Q1〉 can be analytically continued to the
set {x + iy |x ∈ I ,−δ < y < δ} for δ small enough.
Thus we can apply the analytic Fredholm alternative on this set and

conclude that
[
1 + e〈Q1〉X (z)e−〈Q1〉

]−1
exists on I outside a discrete set of

points.

�

Radu Purice (IMAR) NESS as adiabatic limit Poitiers, August 26, 2010 38 / 55



Proof of the main result

Proof of Proposition D-1

In order to simplify our presentation we take N = 2 discrete eigenvalues
which might cross at only one point κ0 ∈ (0, 1).

Rellich’s Theorem states that:

the two eigenvalues are given by two real analytic functions
{εj(κ)}j∈{1,2} defined for κ ∈ [0, 1].

there must exist two constants C > 0,M ∈ N∗ such that

|ε1(κ)− ε2(κ)| ≥ C |κ− κ0|M , κ ∈ [0, 1].

their corresponding orthogonal projections Ej(κ) can also be chosen
to be real analytic on [0, 1].
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Proof of the main result

Proof of Proposition D-1

The Proposition follows easily from

Lemma

If Bη(s) := Wη(s)∗E1(χ(ηs))Wη(s),
Then Bη(0) = E1(χ(0)) = E1(1)
and limη↘0

{
sups≤0 ||Bη(s)− Bη(0)||

}
= 0.

where the first two equalities are evident.

For the limit let us remember that there exists a unique critical time
t0 < 0 when χ(t0) = κ0 (where two eigenvalues intersect).
Fix some 0 < δ < 1 (to be chosen later in a more precise way).
We split the negative semi-axis R− in three parts:

R− =

(
−∞, t0 − ηδ

η

]
∪
[
t0 − ηδ

η
,
t0 + ηδ

η

]
∪
[
t0 + ηδ

η
, 0

]
. (1)
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Proof of the main result

Proof of Proposition D-1 - Near the crossing

Use analyticity of the eigenprojections.

We have:

∂sBη(s) = ηχ′(ηs)W ∗
η (s)E ′1(χ(ηs))Wη(s),

where sup
κ∈[0,1]

|E ′1(κ)| < ∞ due to the real analyticity of the projector.

We write:

Bη

(
t0 + ηδ

η

)
− Bη

(
t0 − ηδ

η

)
=

∫ t0+ηδ

η

t0−ηδ
η

∂sBη(s)ds.

This implies: ∥∥∥∥Bη ( t0 + ηδ

η

)
− Bη

(
t0 − ηδ

η

)∥∥∥∥ ≤ Cηδ.
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Proof of the main result

Proof of Proposition D-1 - Far from the crossing

On this region we have:

from Rellich Theorem

|ε1(χ(ηs))− ε2(χ(ηs))| ≥ C |χ(ηs)− χ(t0)|M ≥ C̃ηMδ

where sup
κ∈[0,1]

|E ′1(κ)| < ∞ due to the real analyticity of the projector.

a positively oriented simple closed contour Γη ⊂ C (with interior
domain Uη) such that:

Uη ∩ σ(Kχ(ηs)) = ε1(χ(ηs)),

Dη := sup
s∈R−\

»
t0−ηδ

η ,
t0+ηδ

η

– supz∈Γη
||(Kχ(ηs) − z)−1|| ≤ Cη−Mδ,

the length of the contour Γη is of order 1/Dη.
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Proof of the main result

Proof of Proposition D-1 - Far from the crossing

Use the second order of the adiabatic expansion.

Fη(s) := Bη(s) + ηχ′(ηs)W ∗
η (s)Y (χ(ηs))Wη(s),

Y (χ(ηs)) := − 1

2π

I
Γη

dz
`
K(χ(ηs))− z

´−1
X (χ(ηs))

`
K(χ(ηs))− z

´−1
,

X (κ) :=
h
E⊥1 (κ)E ′1(κ)E1(κ)− E1(κ)E ′1(κ)E⊥1 (κ)

i
,

where Y (κ) is a bounded operator satisfying:

‖Y (χ(ηs))‖ ≤ Cη−Mδ for s ∈ R− \
»
t0 − ηδ

η
,
t0 + ηδ

η

–
,

and the commutator equation i [K (κ),Y (κ)] = −E ′1(κ), so that:

∂sFη(s) =

− η2W ∗
η (s)

(
∂x
χ′(x)

2π

I
Γη

dz
`
Kχ(x) − z

´−1
X (χ(x))

`
Kχ(x) − z

´−1

)
x=ηs

Wη(s).
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Proof of the main result

Proof of Proposition D-1

Far from the crossing

Thus:

for any [s1, s2] ⊂ R− \
[

t0−ηδ
η , t0+ηδ

η

]
: ||Fη(s1)− Fη(s2)|| ≤ Cη1−2Mδ,

and for s ∈ R− \
[

t0−ηδ
η , t0+ηδ

η

]
: ||Bη(s)− Fη(s)|| ≤ Cη1−Mδ.

Conclusion

||Bη(s)− Bη(0)|| ≤ C (ηδ + η1−2Mδ), ∀s ≤ 0.

Choose now any δ ∈ (0, 1/(2M)) to conclude the proof.

�
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Proof of the main result

Proof of Proposition C-1

By some classical arguments it is enough to prove that R(z)−
◦
R(z) is

compact for some z ∈ C with |Im(z) 6= 0.

Looking at H and
◦
H as self-adjoint extensions of a given symetric

operator, one proves that any v ∈ (R(z)−
◦
R(z))H satisfies the

following equation on L− ∪L+: −
◦
∆D,±u± = zu±.

separating the first variable x1 in x ≡ (x1, x
⊥) ∈ R×D we get:

Lemma (Exponential Decay)

Let z ∈ C \ [0,∞). There exists γ0(z) > 0 such that for γ± ∈ (0, γ0(z)),

we have:

∥∥∥∥e±γ±Q1Π±(R(z)−
◦
R(z))e±γ±Q1Π±

∥∥∥∥ ≤ c ,

and for Ψα(x) := eα
√

x2+1 (α ∈ (0, γ0(z))) we have:∥∥∥∥Ψα(Q1)
(
R(z)−

◦
R(z)

)
Ψα(Q1)

∥∥∥∥ ≤ c .
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Proof of the main result

Proof of Proposition C-1

Let us notice that

R(z)H ⊂
`
H1

0 (L) ∩ H2(L)
´

◦
R(z)H ⊂

ˆ`
H1

0 (L−) ∩ H2(L−)
´
⊕
`
H1

0 (C) ∩ H2(C)
´
⊕
`
H1

0 (L+) ∩ H2(L+)
´˜

Thus
(
R(z)−

◦
R(z)

)
H ⊂ H1

0 (L).

But we have just proved exponential decay for the elements in the range of

R(z)−
◦
R(z).

Thus, the compactness of Sobolev embeddings for compact domains
implies that

R(z)−
◦
R(z) is a compact operator

for any z ∈ C \ R.

�
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Proof of the main result

Proof of Propositions C-2, C-3

Once we have proved the absence of the singular spectrum (Proposition 0)
we shall just prove existence and completness of the wave operators
by using the Kuroda - Birman theory.

Thus we have to prove that the difference of sufficiently high powers of
the rezolvents is trace-class.

Let us fix some κ ∈ [0, 1] and consider

Rκ(z)p −
◦
Rκ(z)p =

P
0≤j≤p−1 Rκ(z)j

`
Rκ(z)−

◦
Rκ(z)

´ ◦
Rκ(z)p−1−j =

=
P

0≤j≤p−1 Rκ(z)jΨα(Q1)−1Ψα(Q1)
`
Rκ(z)−

◦
Rκ(z)

´
Ψα(Q1)Ψα(Q1)−1

◦
Rκ(z)p−1−j

with Ψα(t) := eα
√

t2+1 the exponential weight defined previously.

Moreover: Rκ(z)k+lΨα(Q1)−1 =

Ψα/2(Q1)−1
ˆ
Ψα/2(Q1)Rκ(z)kΨα/2(Q1)−1

˜
Ψα/2(Q1)−1

ˆ
Ψα(Q1)Rκ(z)lΨα(Q1)−1

˜
.
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Proof of the main result

Proof of Propositions C-2, C-3

Lemma

Fix κ ∈ [0, 1] and z ∈ C \ [0,∞).
Then there exist kd ∈ N large enough and α(z) > 0 small enough,

such that for any k ≥ kd we have that F (Q1)
◦
R(z)k , F (Q1)Rκ(z)k and

F (Q1)Ψα(Q1)
◦
R(z)kΨα(Q1)−1, F (Q1)Ψα(Q1)Rκ(z)kΨα(Q1)−1

with |α| < α(z) are Hilbert-Schmidt operators on H
for any measurable function F ∈ L2(R).

In fact let us first notice that for any k ∈ N:

◦
Rκ(z)kH ⊂

“
H2k(L−)

\
H1

0 (L−)
”
⊕
“
H2k(C)

\
H1

0 (C)
”
⊕
“
H2k(L+)

\
H1

0 (L+)
”

and taking k sufficiently large the Sobolev embeding Theorem implies
◦
Rκ(z)kH ⊂ BC (L).
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Proof of the main result

Proof of Propositions C-2, C-3

For the non-decoupled rezolvents the situation is more triky due to
the fact that the perturbation V does not commute with the
derivative with respect to x1 but only with the derivatives with
respect to the orthogonal directions.

Nevertheless we still have:

Rκ(z)kH ⊂ H2`R; H2(k−1)(Rd)
´
∩ L2(L) ⊂ BC

`
R; H2(k−1)(Rd)

´
∩ L2(L) ⊂

⊂ BC
`
R; BC(Rd)

´
∩ L2(L) ⊂ BC(L)

Remark

If T L2(L) ⊂ BC (L) then:

T has an integral kernel KT such that sup
x∈L

∫
L |KT (x , y)|2dy <∞

F (Q)T is Hilbert-Schmidt for any F ∈ L2(L).
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Proof of the main result

Proof of Propositions C-2, C-3

We notice that Ψα(Q1)
◦
HΨα(Q1)−1 =

◦
H + Tα, where Tα is a first

order differential operator which has the following mapping property:

Tα : Hk(L−)⊕ Hk(C)⊕ Hk(L+) −→ Hk−1(L−)⊕ Hk−1(C)⊕ Hk−1(L+).

By induction we prove that for α small enough and k ∈ N:

‖
◦
H

k

Ψα(Q1)
◦
R(z)kΨα(Q1)−1‖ <∞.

A similar result is obtained for H and R by working with a slight
modification of the weight Ψ that is constant on a neighbourhood of
{±a}.

�
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Proof of the main result

Proof of Proposition C-4

First let us notice that using RAGE Theorem:

lim
s↘−∞

ˆ
Eac(K1)W ∗

η (s)Eac(H)
◦

W η(s)Eac(
◦
H)− Eac(K1)W ∗

η (s)
◦

W η(s)Eac(
◦
H)
˜

= 0.

For δ > 0 let Vδ be the set of vectors f ∈ Hac(
◦
H) with compact

spectral support with respect to
◦
H at distance larger than δ from all

thresholds.

{Vδ}δ>0 is dense in Hac(
◦
Kκ) = Hac(

◦
H).

f ∈ Hac(
◦
H) is of the form (f−, f+) ∈ H− ⊕H+.

Suppose f ∈ H+ ∩ Vδ. Then:

f (x , x⊥) =
NX

n=1

wn(x⊥)

Z
R

sin[k(x − a)]fn(k)dk

with wn ∈ L2(D) and fn with compact support at distanc at least δ
from the thresholds.
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Proof of the main result

Proof of Proposition C-4

We use a variant of Cook’ method.

A direct computation gives:‚‚‚‚e−α〈Q1〉{
◦

W η(s)
` ◦
K(χ(ηs)) + 1

´j
f }
‚‚‚‚ ≤ C(f , j , α)

1 + s2
.

Let us write: Ξη(s)f := Φη(s)−Ψη(s)

Φη(s) := Eac(K1)W ∗
η (s)

`
Kχ(ηs) + 1

´−1` ◦
Kχ(ηs) + 1

´−1 ◦
W η(s)

` ◦
Kχ(ηs) + 1

´2
f

Ψη(s) := Eac(K1)W ∗
η (s)

»`
Kχ(ηs) + 1

´−1−
` ◦
Kχ(ηs) + 1

´−1
–
◦

W η(s)
` ◦
Kχ(ηs) + 1

´
f .

lim
s↘−∞

Ψη(s) = 0 because the difference of resolvents provides the

exponential localization near the sample and the adiabatic decoupled
free evolution decays with s (see the formula above).
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Proof of the main result

Proof of Proposition C-4

We shall show that Φη(s) has an absolutely integrable derivative with
respect to s.

A direct computation using estimations similar to those above gives:

||∂sΦη(s)|| ≤ C

1 + s2
.

Thus lims→−∞Φη(s) exists and equals:

Ξηf = Φη(0)

−i

Z 0

−∞
Eac(K1)W ∗η (s)

»`
K(χ(ηs)) + 1

´−1−
` ◦
K(χ(ηs)) + 1

´−1
– ◦

W η(s)
` ◦
K(χ(ηs)) + 1

´2
fds

−
Z 0

−∞
ηχ′(ηs)Eac(K1)W ∗η (s)

`
K(χ(ηs)) + 1

´−1

·V
»`

K(χ(ηs)) + 1
´−1−

` ◦
K(χ(ηs)) + 1

´−1
– ◦

W η(s)
` ◦
K(χ(ηs)) + 1

´
fds.

�
Radu Purice (IMAR) NESS as adiabatic limit Poitiers, August 26, 2010 53 / 55



Proof of the main result

Proof of Proposition C-4

We shall show that Φη(s) has an absolutely integrable derivative with
respect to s.

A direct computation using estimations similar to those above gives:

||∂sΦη(s)|| ≤ C

1 + s2
.

Thus lims→−∞Φη(s) exists and equals:

Ξηf = Φη(0)

−i

Z 0

−∞
Eac(K1)W ∗η (s)

»`
K(χ(ηs)) + 1

´−1−
` ◦
K(χ(ηs)) + 1

´−1
– ◦

W η(s)
` ◦
K(χ(ηs)) + 1

´2
fds

−
Z 0

−∞
ηχ′(ηs)Eac(K1)W ∗η (s)

`
K(χ(ηs)) + 1

´−1

·V
»`

K(χ(ηs)) + 1
´−1−

` ◦
K(χ(ηs)) + 1

´−1
– ◦

W η(s)
` ◦
K(χ(ηs)) + 1

´
fds.

�
Radu Purice (IMAR) NESS as adiabatic limit Poitiers, August 26, 2010 53 / 55



Proof of the main result

Proof of Proposition C-4

We shall show that Φη(s) has an absolutely integrable derivative with
respect to s.

A direct computation using estimations similar to those above gives:

||∂sΦη(s)|| ≤ C

1 + s2
.

Thus lims→−∞Φη(s) exists and equals:

Ξηf = Φη(0)

−i

Z 0

−∞
Eac(K1)W ∗η (s)

»`
K(χ(ηs)) + 1

´−1−
` ◦
K(χ(ηs)) + 1

´−1
– ◦

W η(s)
` ◦
K(χ(ηs)) + 1

´2
fds

−
Z 0

−∞
ηχ′(ηs)Eac(K1)W ∗η (s)

`
K(χ(ηs)) + 1

´−1

·V
»`

K(χ(ηs)) + 1
´−1−

` ◦
K(χ(ηs)) + 1

´−1
– ◦

W η(s)
` ◦
K(χ(ηs)) + 1

´
fds.

�
Radu Purice (IMAR) NESS as adiabatic limit Poitiers, August 26, 2010 53 / 55



Proof of the main result

Proof of Proposition C-5

First, let us compute the limit η ↘ 0 in the above formula.
Use the Lebesgue dominated convergence theorem to obtain:

lim
η↘0

Ξηf = Eac(K1)
`
K(1) + 1

´−1` ◦
K(1) + 1

´
f

− i

Z 0

−∞
Eac(K1)e isK(1)

»`
K(1) + 1

´−1 −
` ◦
K(1) + 1

´−1
–

e−is
◦
K(1)` ◦K(1) + 1

´2
fds.

Secondly, we show that the above right hand side coincides with Ξ0f .

Eac(K1)e isK(1)e−is
◦
K(1)f =: Φ0(s)−Ψ0(s) where

Φ0(s) := Eac(K1)e isK(1)`K(1) + 1
´−1` ◦

K(1) + 1
´−1

e−is
◦
K(1)` ◦K(1) + 1

´2
f ,

Ψ0(s) := Eac(K1)e isK(1)

»`
K(1) + 1

´−1 −
` ◦
K(1) + 1

´−1
–

e−is
◦
K(1)` ◦K(1) + 1

´
f .

Using the previous propagation estimates which were shown to be
uniform in η, we can repeat the same argument as in Proposition C-4
but with η = 0 from the beginning.
This will give a formula for Ξ0f which will coincide with the one above.
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K(1) + 1

´−1
–

e−is
◦
K(1)` ◦K(1) + 1

´
f .

Using the previous propagation estimates which were shown to be
uniform in η, we can repeat the same argument as in Proposition C-4
but with η = 0 from the beginning.
This will give a formula for Ξ0f which will coincide with the one above.
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The End

Thank you for your attention !
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